A Wavelet-Galerkin Scheme for the Navier-Stokes equations

نویسندگان

  • N. Faustino
  • G. Teschke
چکیده

We propose a Wavelet-Galerkin scheme for the stationary NavierStokes equations based on the application of interpolating wavelets. To overcome the problems of nonlinearity, we apply the machinery of interpolating wavelets presented in [10] and [13] in order to obtain problem-adapted quadrature rules. Finally, we apply Newton’s method to approximate the solution in the given ansatz space, using as inner solver a steepest descendent scheme. To obtain approximations of a higher accuracy, we apply our scheme in a multi-scale context. Special emphasize will be given for the convergence of the scheme and wavelet preconditioning. MSC 2000: 46E35, 65N30, 41A17, 76D05, 65F35 keywords: Galerkin scheme, wavelets, multiscale and multilevel methods, saddle-point problems, Navier-Stokes equation, Newton scheme, preconditioning

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pseudo - Wavelet Scheme for theTwo - Dimensional Navier -

Numerical schemes taking advantage of the wavelet bases capabilities to compress both functions and operators are presented. Galerkin methods for the heat and Poisson equations in dimension two are developed and numerically tested. Then a pseudo-wavelet scheme, using collocation for the nonlinear term, is deened for the two-dimensional Navier-Stokes equations. Numerical tests prove its accuracy.

متن کامل

A Time Accurate Pseudo-Wavelet Scheme for Two-Dimensional Turbulence

In this paper, we propose a wavelet-Taylor–Galerkin method for solving the twodimensional Navier–Stokes equations. The discretization in time is performed before the spatial discretization by introducing second-order generalization of the standard time stepping schemes with the help of Taylor series expansion in time step. WaveletTaylor–Galerkin schemes taking advantage of the wavelet bases cap...

متن کامل

Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications

 Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...

متن کامل

Using divergence free wavelets for the numericalsolution of the

The divergence free formulation of the Stokes problem leads to a positive deenite system of reduced size for the velocity, provided that divergence free trial spaces are available. The pressure is eliminated and can eeciently be computed by a post-processing procedure. In this paper we use divergence free wavelets to construct corresponding trial spaces for a Galerkin scheme. We describe the co...

متن کامل

Stability and Convergence for Discretization Methods with Applications to Wavelet Galerkin Schemes

We give a simple approach for a well-known, but rather complicated theory for general discretization methods, Petryshyn [34] and Zeidler [40]. We employ only some basic concepts such as invertibility, compact perturbation and approximation. It allows to treat a wide class of space discretization methods and operator equations. As demonstration examples we use wavelet Galerkin methods applied to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006